Pages

Thursday 24 February 2011

what is transistor

transistor is a semiconductor device used to amplify and switch electronic signals. It is made of a solid piece of semiconductor material, with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current flowing through another pair of terminals. Because the controlled (output) power can be much more than the controlling (input) power, the transistor provides amplification of a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits

Transistor as a switch

BJT used as an electronic switch, in grounded-emitter configuration.
Transistors are commonly used as electronic switches for both high- and low-power applications such as switched-mode power supplies and logic gatesrespectively.
In a grounded-emitter transistor circuit, such as the light-switch circuit shown, as the base voltage rises the base and collector current rise exponentially, and the collector voltage drops because of the collector load resistor. The relevant equations:
VRC = ICE × RC, the voltage across the load (the lamp with resistance RC)
VRC + VCE = VCC, the supply voltage shown as 6V
If VCE could fall to 0 (perfect closed switch) then Ic could go no higher than VCC / RC, even with higher base voltage and current. The transistor is then said to be saturated. Hence, values of input voltage can be chosen such that the output is either completely off,[13] or completely on. The transistor is acting as a switch, and this type of operation is common in digital circuits where only "on" and "off" values are relevant.

[edit]Transistor as an amplifier

Amplifier circuit, common-emitter configuration.
The common-emitter amplifier is designed so that a small change in voltage in (Vin) changes the small current through the base of the transistor and the transistor's current amplification combined with the properties of the circuit mean that small swings in Vin produce large changes in Vout.
Various configurations of single transistor amplifier are possible, with some providing current gain, some voltage gain, and some both.
From mobile phones to televisions, vast numbers of products include amplifiers for sound reproductionradio transmission, and signal processing. The first discrete transistor audio amplifiers barely supplied a few hundred milliwatts, but power and audio fidelity gradually increased as better transistors became available and amplifier architecture evolved.
Modern transistor audio amplifiers of up to a few hundred watts are common and relatively inexpensive.

[edit]

Advantages

The key advantages that have allowed transistors to replace their vacuum tube predecessors in most applications are
  • Small size and minimal weight, allowing the development of miniaturized electronic devices.
  • Highly automated manufacturing processes, resulting in low per-unit cost.
  • Lower possible operating voltages, making transistors suitable for small, battery-powered applications.
  • No warm-up period for cathode heaters required after power application.
  • Lower power dissipation and generally greater energy efficiency.
  • Higher reliability and greater physical ruggedness.
  • Extremely long life. Some transistorized devices have been in service for more than 50 years.
  • Complementary devices available, facilitating the design of complementary-symmetry circuits, something not possible with vacuum tubes.
  • Insensitivity to mechanical shock and vibration, thus avoiding the problem of microphonics in audio applications.

No comments:

Post a Comment